Rapid evolution of mammalian X-linked testis-expressed homeobox genes.

نویسندگان

  • Xiaoxia Wang
  • Jianzhi Zhang
چکیده

Homeobox genes encode transcription factors that function in various developmental processes and are usually evolutionarily conserved in their sequences. However, two X-chromosome-linked testis-expressed homeobox genes, one from rodents and the other from fruit flies, are known to evolve rapidly under positive Darwinian selection. Here we report yet another case, from primates. TGIFLX is an X-linked homeobox gene that originated by retroposition of the autosomal gene TGIF2, most likely in a common ancestor of rodents and primates. While TGIF2 is ubiquitously expressed, TGIFLX is exclusively expressed in adult testis. A comparison of the TGIFLX sequences among 16 anthropoid primates revealed a significantly higher rate of nonsynonymous nucleotide substitution (d(N)) than synonymous substitution (d(S)), strongly suggesting the action of positive selection. Although the high d(N)/d(S) ratio is most evident outside the homeobox, the homeobox has a d(N)/d(S) of approximately 0.89 and includes two codons that are likely under selection. Furthermore, the rate of radical amino acid substitutions that alter amino acid charge is significantly greater than that of conservative substitutions, suggesting that the selection promotes diversity of the protein charge profile. More interestingly, an analysis of 64 orthologous homeobox genes from humans and mice shows substantially higher rates of amino acid substitution in X-linked testis-expressed genes than in other genes. These results suggest a general pattern of rapid evolution of mammalian X-linked testis-expressed homeobox genes. Although the physiological function of and the exact selective agent on TGIFLX and other rapidly evolving homeobox genes are unclear, the common expression pattern of these transcription factor genes led us to conjecture that the selection is related to one or more aspects of male reproduction and may contribute to speciation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid evolution of primate ESX1, an X-linked placenta- and testis-expressed homeobox gene.

Homeobox genes encode transcription factors that play important roles in various developmental processes and are usually evolutionarily conserved. Here we report a case of rapid evolution of a homeobox gene in humans and non-human primates. ESX1 is an X-linked homeobox gene primarily expressed in the placenta and testis, with physiological functions in placenta/fetus development and spermatogen...

متن کامل

-

The homeobox genes are known to play a crucial role in controlling the development of multicellular organisms. The majority of these genes have been determined to express regulatory proteins act as a regulatory protein. These trans-acting factors regulate the expression of proteins that are necessary during the developmental processes throughout the body. TGIFLX/Y is a homeobox gene and it cont...

متن کامل

Spx1, a novel X-linked homeobox gene expressed during spermatogenesis

Spx1, a novel mouse homeobox gene, encodes a homeodomain characteristic of the paired-like class of homeobox genes and has been mapped to the distal end of the X chromosome. Northern blot hybridization of adult tissues detected high levels of a single Spx1 transcript in the testis. Further analysis by in situ hybridization revealed predominant Spx1 expression within the spermatogonia/preleptote...

متن کامل

Stage-Specific Expression Profiling of Drosophila Spermatogenesis Suggests that Meiotic Sex Chromosome Inactivation Drives Genomic Relocation of Testis-Expressed Genes

In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI) was first proposed to explain male sterility caused ...

متن کامل

DUX4 Binding to Retroelements Creates Promoters That Are Active in FSHD Muscle and Testis

The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcription factor in skeletal muscle. DUX4 binds sites in the human genome that contain a double-home...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 167 2  شماره 

صفحات  -

تاریخ انتشار 2004